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Compressible Boundary Layer Receptivity and Instability

Garn L. Brown and Paolo Graziosi
Department of Mechanical and Aerospace Engineering
' Princeton University
Paper presented at AFOSR Contractor’s Meeting
Annapolis, MD
August 18, 1998
Recent Accomplishments
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A high quality flow has been established in a low turbulence variable geometry (LTVG)
8” x 8" supersonic wind-tunnel at Princeton. In particular, the facility is being operated
at very low stagnation pressures (= 4 psia) giving a large region of laminar flow on a flat
plate with laminar boundary layers up to approximately 3mm thick. Mean profiles,
amplitude distributions, two wire correlations and spectra have been measured in detail
through a Mach 3 boundary layer along the centerline of the flat plate. The initial results
are for “naturally” occurring instability and transition and they are being followed by

measurements of the forced response from a point source (spark).

Measured mean boundary layer profiles obtained by Pitot measurement are shown in
Figure 1. The agreement with the predictions from computations is remarkable. The
measured profiles are so close to the predictions that they have been subsequently used to
re-calibrate the hot-wire in situ and better define the measured velocity fluctuation
amplitude distribution. Measured transitional boundary layer profiles with larger natﬁral

forcing at higher pressures are also shown in Figure 1.

The velocity fluctuation energy spectra (Figure 2) reveal the presence of two distinct
“humps” in frequency bands corresponding to two distinct modes of fluctuations. A low
frequency mode (~1-7Khz) believed to be a high receptivity response to acoustic forcing
and a high frequency mode (~8Khz-30Khz) whose peak frequency agrees extremely well
with the computed frequency of the most unstable first mode of instability waves

(Calculations by Mack and Balakumar).
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The two wire correlation measurements show the low frequency mode to have a two
dimensional structure characterized by an extremely high correlation coefficient (.8..9)
for wire separation distances up to .8 (Figure 3). The high frequency mode shows a 3D
structure (Figure 3) (an analysis in depth is being carried out to determine the
characteristic angle of inclination of the wave vector with respect to the free-stream
direction in this case). A region of overlap is present in frequency space between the
above-mentioned modes of fluctuations; in this region the spanwise correlation

coefficient is very low despite the significant contribution to the overall energy content.

The measured energy level of the fluctuations in the boundary layer is affected by the
operating conditions of the facility. In particular the intensity of the low frequency mode
is dependent on the pressure ratio across the upstream valve and the unit Reynolds
number. The low frequency energy content increases as the stagnation pressure and/or
the pressure differential across the inlet valve increases; this behavior along with
correlation measurements confirms the acoustic nature of the low frequency fluctuations
and identifies the upstream valve as the main source of the acoustic noise in the free-
stream. At the lowest stagnation pressure with the minimum pressure differential across
the upstream valve, the free-stream “turbulence” is very low and of the order of 0.1%
(further measurements are being made to characterize accurately the free-stream

disturbances).

Amplitude distributions in the boundary layer corresponding to two different unit
Reynolds numbers are shown in Figure 4. At the lower stagnation pressure, after
approximately 13” downstream of the leading edge, the growth rate of the amplitude of
fluctuations in the laminar boundary layer is found to be affected by a disturbance
propagating from the corners at the léading edge of the flat plate; measurements have
been confined therefore to the region from the leading edge to 12” downstream. Close
agreement between the computed eigenfunction (Mack) and the measured narrow band
fluctuations was obtained in this region (Figure 5). These are the first reliable and

detailed measurements of the eigen function in a compressible boundary layer.
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For the higher stagnation pressure. the boundary laver shape is observed to depart from
the laminar solution at x = 9.5™ - 12°. giving a corresponding transition

Rex = 6.5 — 9 x 10°. The somewhat low transition Reynolds number in this case is due to
the higher level of fluctuations present in the free stream at these higher unit Reynolds

number conditions, confirming again the highly receptive nature of the compressible

boundary layer.

In the laminar region of the boundary layer, the time history of the fluctuating voltage
shows a relatively uniform "“sinusoidal” behavior at a frequency corresponding
approximately to the frequency of the most amplified instability wave (Figure 6). A
different pattern emerges as the boundary layer becomes transitional (Figure 7),
characteristic spikes not unlike the incompressible counterpart, are evident in the wall
region as well as in the outer part of the boundary layer, while the central portion is
characterized by bursts of high frequency fluctuations. To help clarify the process of
natural transition, correlation measurements have been carried out through the

transitional boundary layer, and their analysis is currently being undertaken.

Figure 8 shows a comparison between the measured amplitude distribution in the first-
mode band of instability frequencies and the eigen function recently calculated by
Balakumar. Further detailed comparisons are being made between growth rates and the

detailed instability predictions made for us by Balakumar.

We have begun to examine in detail the forced response of the boundary layer and Figure
9 shows the spectrum of fluctuations measured when the boundary layer is forced by a
spark source at a frequency within the instability band. Correlations between two wires
separated in the spanwise direction allow us to make detailed comparisons with stability
theory predictions of the wave angle (Figure 9). This experimental result gives a wave
angle of 60° which we anticipate will be close to stability predictions. Balakumar is
providing the corresponding predictions at various locations downstream based on point

source forcing at 2” from the leading edge. Figure 10 shows a comparison between the




measured amplitude distributions at different forcing amplitudes. The response 1s clearly

in the linear stability regime.
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EXPERIMENT

L. TVG Mach 3 supersonic wind tunnel
with ejector system operated at
PO ~ 4 and 5 Psia

8" x 8" Test section

eFlat plate BL. | ~
(Re/m = 2.4x10"6 and 2.8x1076)
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Broad band amplitude across the BL (HW results), PO = 4.2Psi
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Narrow band amplitude across the BL (HW results), 12Khz - 24Khz, PO = 4.2Psi.
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Narrow Band Amplitude Distribution, 11.7Khz - 12.7Khz, R=585, P0=4 2psia
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